14 заметок с тегом

BI guide

Обзор дашборда в Superset

Время чтения текста – 2 минуты

В сегодняшней статье в рамках большого обзора BI-систем мы вновь посмотрим на обновленный и улучшенный Apache Superset — open-source инструмент с множеством опций, которые позволяют пользователям с любым опытом изучать и визуализировать данные, от простых линейных графиков до высокодетализированных геопространственных диаграмм (ух!).

В видео обзоре мы разберем интерфейс этого BI-инструмента, конфигурацию, настроим отчеты и визуализацию (с дополнительными примерами), поговорим о фишках и сложностях Apache Superset, и построим итоговый дашборд.
Кстати, первую версию дашборда мы сделали еще в прошлом году, но с тех пор вышло много апдейтов и мы построили новый. Так как мы уже показывали вам дашборд в Superset, в видео мы сравним предыдущую версию с новой и обсудим различия.

Все аналитики команды Valiotti Analytics оценили дашборд в Superset. В итоге, мы получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):
Отвечает ли заданным вопросам — 8,1
Порог входа в инструмент — 5,8
Функциональность инструмента — 7,7
Удобство пользования — 8,1
Соответствие результата макету — 8,9
Визуальная составляющая — 7,3

Итог: дашборд получает 7,7 баллов из 10. Посмотрите на финальный результат и тоже оцените его!

Автор дашборда, член команды Valiotti Analytics — Егор Сатюков

 Нет комментариев    1535   2022   bi   BI guide   BI-инструменты

Обзор дашборда в Metabase

Время чтения текста – 2 минуты

В новом обзоре BI-систем мы посмотрим на Metabase — open-source инструмент для бизнес-аналитики, в котором можно писать запросы к данным нескольких видов и визуализировать результаты на дашбордах. Ещё Metabase может сам описать ваш датасорс и построить множество разных графиков, а ещё инструмент позволяет создавать «пульсы» благодаря встроенной системе оповещений, которые будет отправлять вам в Slack или на почту уведомления об изменениях в данных.

В видео говорим про интерфейс BI-инструмента, про виды запросов и визуализаций в Metabase, про подключение датасорсов, про реализацию переменных и фильтров, про сводные таблицы (сделаны очень грамотно!), вёрстку дашборда в системе и публикацию в сети.

Внутри команды мы оценили дашборд в Metabase и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):
Отвечает ли заданным вопросам — 8,6
Порог входа в инструмент — 6,0
Функциональность инструмента — 7,2
Удобство пользования — 7,4
Соответствие результата макету — 7,0
Визуальная составляющая — 6,6

Итог: дашборд получает 7,1 баллов из 10. Посмотрите на полученный результат.

Автор дашборда, член команды Valiotti Analytics — Мария Авдеева

 3 комментария    1295   2021   bi   BI guide   BI-инструменты   metabase

Обзор дашборда в Dash

Время чтения текста – 2 минуты

Посмотрите и другие наши материалы про plotly

Сегодня публикуем не совсем классический выпуск обзора BI-инструментов — потому что речь пойдёт о Dash, фреймворке для Python от plotly. Dash — гибкий инструмент, который предоставляет набор компонентов для работы с HTML и Bootstrap для создания дашбордов с графиками plotly. Дашборд, созданный при помощи Dash — это веб-страница, написанная на Python. Любую диаграмму можно настроить, изменив передаваемые параметры прямо в коде. А работать с самими данными можно любым удобным в Python способом — например, при помощи датафреймов pandas.

В новом обзоре посмотрим на работу коллбэков и фильтров в Dash, а также на реализацию таблиц и диаграмм дашборда Superstore в plotly и Dash.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):
Отвечает ли заданным вопросам — 8,83
Порог входа в инструмент — 4,83
Функциональность инструмента — 8,66
Удобство пользования — 7,83
Соответствие результата макету — 9,00
Визуальная составляющая — 8,16

Итог: дашборд получает 8,05 баллов из 10. Посмотрите на полученный результат.

Автор дашборда, член команды Valiotti Analytics — Елизавета Мазурова

 1 комментарий    701   2021   BI guide   BI-инструменты   dash   plotly   python

Обзор дашборда Yandex DataLens

Время чтения текста – 2 минуты

Два года назад Яндекс выпустил собственный инструмент для визуализации данных — Yandex DataLens, работающий на базе Yandex Cloud. В блоге уже выходил обзор инструмента — но тогда сервис был на стадии Preview, и за два года функционал инструмента расширили. Сервис тарифицируемый и без привязки платёжного аккаунта поработать в нём не получится, но помимо платного тарифа есть и бесплатный.

Подробнее о тарифах Yandex DataLens можно почитать в документации

В сегодняшнем обзоре BI-систем мы посмотрим, как зарегистрировать аккаунт в DataLens, подключить датасет и создать дополнительные таблицы на основе SQL-запросов, построить визуализации, связать их с фильтрами и добавить на дашборд согласно макету, а затем опубликовать результат.

Внутри команды мы оценили дашборд в DataLens и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

Отвечает ли заданным вопросам — 7,0
Порог входа в инструмент — 8,0
Функциональность инструмента — 7,0
Удобство пользования — 8,3
Соответствие результата макету — 7,5
Визуальная составляющая — 8,5
Итог: дашборд получает 8 баллов из 10. Посмотрите на полученный результат.

 1 комментарий    346   2021   bi   BI guide   BI-инструменты   datalens

Обзор Looker

Время чтения текста – 3 минуты

Looker — BI-инструмент класса self-service. Это подразумевает, что все отчёты и быструю аналитику пользователь делает самостоятельно без привлечения специалиста в области данных (последний заранее настраивает необходимые модели данных).

Looker особенно популярен в США: в 2019 году Google купил стартап за $2,6 млрд. Тем не менее, далеко не каждый российский аналитик с ним знаком. В рунете ещё не было обзора на Looker, так что заложим фундамент для последующих публикаций.

В сегодняшнем обзоре BI-систем мы изучим интерфейс Looker, погрузимся в терминологию инструмента, взглянем на готовые приложения в Marketplace, разберёмся с построением Look ML моделей и посмотрим на итоговый дашборд по датасету SuperStore.

Подробнее об инструменте можно почитать в материале «Обзор Looker»

Публикация дашборда

При публикации дашборда таким методом он может некорректно отображаться в браузерах Safari и Internet Explorer

Для публикации мы использовали подход, описанный в документации Looker. Генерация ссылки происходит как в примере с GitHub.

Предварительно выполняем создание нового пользователя в настройках админ-панели Looker с соответствующими просмотру дашборда доступами, чтобы любой незарегистрированной пользователь мог войти под этой учётной записью в одной сессии. Для вывода дашборда на веб-страницу используется фреймворк Flask, а сама сгенерированная ссылка вставляется как источник в тег iframe в html-файле. Весь код деплоим на Heroku, чтобы иметь постоянный URL для доступа к дашборду.

Так как ссылка для SSO генерируется для одной сессии, нужно настроить Heroku Scheduler и прописать выполнение скрипта такого вида соответственно длине одной сессии. Например, если сессия длится 10 минут, то и выполнение должно происходить каждые 10 минут.

Оценки

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):
1) Отвечает ли заданным вопросам — 8,8
2) Порог входа в инструмент — 7
3) Функциональность инструмента — 7,4
4) Удобство пользования — 7,2
5) Соответствие результата макету — 7,8
6) Визуальная составляющая — 8,6
Итог: дашборд в Looker получает 7,8 баллов из 10.

Посмотрите на полученный результат.

Обзор дашборда в Excel

Время чтения текста – 1 минута

На Excel я собаку съел: проработав много лет аналитиком, при помощи этого инструмента я автоматизировал маркетинговую отчетность, рассчитывал всевозможные репорты и рекламную эффективность, писал макросы, а однажды даже автоматизировал подключение MS Excel к базе данных Oracle через TextBox, в котором был записан текст запроса: получилась собственная SQL-консоль вроде Redash.

В сегодняшнем видео на примере датасета SuperStore я покажу, что Excel — не просто калькулятор строк и столбцов, но и мощнейший аналитический инструмент, сопоставимый с промышленными BI-системами.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

Отвечает ли заданным вопросам — 8,4
Порог входа в инструмент — 7,0
Функциональность инструмента — 8,0
Удобство пользования — 6,0
Соответствие результата макету — 8,4
Визуальная составляющая — 7,4

Итог: дашборд в Excel получает 7,5 баллов из 10. Посмотрите на полученный результат.

Обзор дашборда в Google DataStudio

Время чтения текста – 1 минута

В прошлом гайде по BI-системам мы рассмотрели Redash, а в этот раз поговорим о дашборде, построенном при помощи Google DataStudio. Пройдёмся по результату и посмотрим, как подключать в системе датасорсы из Google SpreadSheets или других источников, добавлять новые фактоиды, фильтры и настраивать данные и визуализации.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 8,7
  2. Порог входа в инструмент — 7,0
  3. Функциональность инструмента — 7,5
  4. Удобство пользования — 6,5
  5. Соответствие результата макету — 8,7
  6. Визуальная составляющая — 7,8

Итог: дашборд в Google DataStudio получает 7,7 баллов из 10. Посмотрите на полученный результат.

Обзор дашборда в Redash

Время чтения текста – 2 минуты

О создании credentials и работе с Google Spreadsheets API мы рассказывали в материале «Собираем данные по рекламным кампаниям ВКонтакте»

В этот раз в цикле материалов по BI-системам рассмотрим Redash: open source инструмент, представляющий собой SQL-консоль, который можно совершенно бесплатно развернуть у себя на сервере и подключить в качестве датасорса множество баз данных (включая Clickhouse!) или другой источник по API, например, Google Sheets.

В видео обсудим плюсы и минусы Redash, посмотрим, как создавать отчёты и дашборды при помощи визуализаций запросов, подключить датасорсы, реализовать фактоиды, визуализацию Word Cloud и прочие аналогии графиков оригинального макета.

Внутри команды мы оценили дашборд в Redash и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 7,3
  2. Порог входа в инструмент — 7,5
  3. Функциональность инструмента — 5,5
  4. Удобство пользования — 7,5
  5. Соответствие результата макету — 6,0
  6. Визуальная составляющая — 5,2

Итог: дашборд получает 6,5 баллов из 10. Посмотрите на полученный результат.

 2 комментария    225   2020   bi   BI guide   BI-инструменты   redash

Обзор дашборда в SAP Analytics Cloud

Время чтения текста – 2 минуты

В прошлом гайде по BI-системам мы рассмотрели PowerBI, а в этот раз поговорим о дашборде в SAP Analytics Cloud, который для нас построил ведущий BI консультант SAPRUN Алексей Салынин.

В видео рассказываем, как в SAP создавать новый источник данных, реализовать Tree Map, встроить графики в таблицы, настроить предпросмотр на мобильных устройствах и как работать с умным помощником Smart Insight.

Вместе с Алексеем (его оценки в скобках) мы оценили дашборд внутри команды и получили такие средние оценки:

  1. Отвечает ли заданным вопросам — 9,8 (10)
  2. Порог входа в инструмент — 6,5 (7)
  3. Функциональность инструмента — 9,8 (9)
  4. Удобство пользования — 8,2 (8)
  5. Соответствие результата макету — 9,3 (10)
  6. Визуальная составляющая — 8,6 (9)

Итог — дашборд в SAP Analytics Cloud получает 8,71 балл из 10. Посмотрите на полученный результат.

Обзор дашборда в PowerBI

Время чтения текста – 1 минута

Продолжаем цикл материалов о BI-системах: сегодня рассмотрим дашборд, который собран в PowerBI по датасету SuperStore Sales. Изучим, как подключать данные к системе, настраивать кастомные цвета для визуализаций и создавать новые меры, реализовать переключение между графиками при помощи закладок и с какими сложностями столкнулись в процессе построения дашборда.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 9,8
  2. Порог входа в инструмент — 3,0
  3. Функциональность инструмента — 9,5
  4. Удобство пользования — 7,5
  5. Соответствие результата макету — 9,5
  6. Визуальная составляющая — 8,8

Итог — дашборд PowerBI получает 8,0 баллов из 10. Посмотрите на полученный результат.

А что вы думаете о получившимся дашборде? Поставьте свои оценки в нашем Telegram-канале!

Обзор дашборда в QlikSense

Время чтения текста – 2 минуты

Прошлое видео цикла гайдов по BI-инструментам было посвящено Tableau, а сегодня будем разбираться с дашбордом в QlikSense по датасету SuperStore Sales, который построил для нас Алексей Гриненко — главный разработчик QlikSense в компании «Евроцемент груп».

В видео смотрим, как сделать переключатель месяца при помощи Variable Input и динамическое переключение показателей при изменении месяца, как настроить визуализации для диаграмм и схем и добавить всплывающие подсказки при наведении.

Вместе с Алексеем (его оценки указаны в скобках) мы оценили внутренней командой дашборд по критериям и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 10
  2. Порог входа в инструмент — 6,9 (8)
  3. Функциональность инструмента — 9,0 (7)
  4. Удобство пользования — 7,3 (8)
  5. Соответствие результата макету — 9,8 (9)
  6. Визуальная составляющая — 7,5 (10)

Итог — дашборд QlikSense получает 8,4 балла из 10. Посмотрите на полученный результат:

А что вы думаете о получившимся дашборде? Поставьте свои оценки в нашем Telegram-канале!

Обзор дашборда в Tableau

Время чтения текста – 2 минуты

В прошлый раз мы разобрались с постановкой задачи, построили макет и поставили цель спроектировать дашборд в Tableau по датасету SuperStore Sales, который поможет понять среди каких регионов, продуктовых групп и клиентских сегментов формируется прибыль и каковы общие показатели деятельности за прошедшее время.

В видео рассказываю весь процесс создания дашборда в первом рассматриваемом инструменте — Tableau: как мы подготавливали данные, создавали отчёты, верстали дашборд, с какими сложностями и правками столкнулись, а также как опубликовать его на сервере Tableau Public и насколько результат соответствует поставленной задаче.

Мы оценили внутренней командой дашборд по критериям и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 10,0

  2. Порог входа в инструмент — 5,5

  3. Функциональность инструмента — 9,0

  4. Удобство пользования — 8,5

  5. Соответствие результата макету — 10,0

  6. Визуальная составляющая — 9,7

Итог — дашборд на Tableau получает 8,8 баллов из 10 от нашей команды. Посмотрите на полученный результат.

А что вы думаете о получившимся дашборде? Поставьте свои оценки в нашем Telegram-канале!

Постановка задачи для дашборда

Время чтения текста – 6 минут

В предыдущем материале шла речь о создании гайда по современным BI-системам, и сегодня начнём с постановки задачи. Возьмём довольно типичный сценарий в крупной организации — он встречался почти во всех, в которых мне довелось поработать. Предположим, что ежемесячно команда топ-менеджеров собирается и подводит итоги прошедшего месяца. Ключевая цель компании — максимизация прибыли и дивидендов. Исходя из этого команде нужен инструмент, который отобразит динамику прибыли и других основных показателей за отчётный период. Инструмент необходим для того, чтобы понять, где и как формируется прибыль, что является драйверами изменений прибыли. В качестве такого инструмента мы предлагаем использовать дашборд.

Постановка задачи

Наша задача — спроектировать и реализовать дашборд на тестовом датасете SuperStore Sales (он, кстати, весьма приближен к реальности), который ответит на следующие вопросы:

  1. Каковы общие показатели деятельности за прошедший месяц? Необходимо для подведения итогов в сравнении с аналогичным периодом прошлого года.
  2. Какие ключевые регионы формируют прибыль, а какие не эффективны?
  3. Какие категории, подкатегории, товары и клиенты формируют прибыль, а какие приносят убытки?

О датасете

В данных содержится информация о покупках (лист Orders) и возвратах (лист Returns) клиентов. Данные о покупках содержат всю доступную информацию о заказах: идентификаторы записи, даты заказов, приоритетность заказов, количество позиций, объём продаж и размер прибыли, размеры скидкок, типы и цены доставки, данные о клиентах и прочую полезную информацию. Мы будем работать только с листом данных Orders.

Фрагмент листа Orders

Макет дашборда

В верхней панели расположен заголовок дашборда с его кратким описанием. На том же уровне фильтр временного отрезка (конкретный месяц отчета). На уровне ниже — подзаголовок «KPI».

В первую очередь мы хотим понять общие ключевые изменения, поэтому далее расположим фактоиды:

  • Прибыль (Profit) и прирост YoY
  • Продажи (Sales) и прирост YoY
  • Количество заказов (Orders count) и прирост YoY
  • Средняя скидка (Avg Discount) и прирост YoY
  • Число клиентов (Customers) и прирост YoY
  • Продажи на клиента (Sales per Customer) и прирост YoY

Ниже будет расположен график с топом регионов по продажам, визуализированный в виде древовидной карты (или аналога). Размер прямоугольника на графике будет соответствовать объёму продаж, а цвет — показателю прибыли. Такая визуализация даст понять, какие регионы эффективны, а какие нет. Классно, если у исследуемого BI-инструмента будет возможность получить расширенную информацию при клике на регион и посмотреть, чем отличаются прибыльные регионы от неэффективных.

Правее расположим график с динамикой прибыли: в нём будем рассматривать, как в зависимости от времени меняется показатель. Хочется, чтобы на графике точками были отмечены анализируемый месяц и аналогичный месяц год назад для понимания тренда.

Следующий блок анализа — продукты и клиентские сегменты. На левой горизонтальной столбчатой диаграмме типа «Градусник» расположим объём продаж и прибыль по категориям и подкатегориям. По возможности BI-системы к диаграмме добавим фильтр топа товарных наименований по прибыли.

О том, как строить диаграмму Градусник в Python можно почитать в материале о красивой визуализации

Справа — горизонтальная столбчатая диаграмма с топом продуктов, отсортированных по прибыли.

Самая нижняя горизонтальная столбчатая диаграмма — топ клиентов по прибыли. Он аналогичен предыдущему графику, только вместо товаров покажет имена клиентов, сгруппированых по клиентскому сегменту и прибыль, которую они принесли.

В итоге получится приблизительно такой макет дашборда:

Предполагаемый макет дашборда в BI-инструменте

Гайд по современным BI-системам

Время чтения текста – 4 минуты

В новой серии постов постараемся подробно изучить различные BI-системы на популярной группе датасетов SuperStore Sales. В основе данных — продажи и прибыль сетевого ритейлера в долларах.

В следующем посте обсудим постановку реальной задачи, которая могла бы стоять при подготовке дашборда на основе датасета и спроектируем макет эффективного дашборда, отвечающего на поставленные вопросы. В рамках описания задачи укажем желаемую цветовую гамму для того, чтобы сравнение дашбордов было максимально консистентным.

Затем, используя каждый инструмент, построим дашборд, который позволит принимать эффективные управленческие решения на основе данных. При подготовке дашборда постараемся подключать экспертов индустрии и учтём их комментарии.

Ниже перечислен перечень BI-систем и инструментов для работы, с данными, которые хотелось бы опробовать и описать опыт построения дашборда. Приглашаю тех, кто желает поучаствовать в решении данной задачи написать мне в Telegram — @valiotti. Разумеется, авторство дашборда будет указано. Проект некоммерческий, но полезный для сравнения современных систем для аналитики независимо от квадрантов Gartner.

Сейчас в планах подготовить материалы о следующих инструментах:

Бесплатные (Open source):

Бесплатные (cloud):

Платные (cloud):

  • Mode
  • Cluvio
  • Holistic
  • Chartio
  • Periscope
  • DeltaDNA
  • Klipfolio
  • Count.co
  • SAP Analytics Cloud: 8,7 баллов из 10

Платные:

  • PowerBI: 8,0 балла из 10
  • Tableau: 8,8 баллов из 10
  • Looker: 7,7 балла из 10
  • Excel: 7,5 балла из 10
  • Alteryx
  • Qlik Sense: 8,4 балла из 10

Итоговая цель — оценить системы по нескольким внутренним критериям:

  • порог входа в инструмент (1 — супер сложно, 10 — легко)
  • функциональность инструмента (1 — очень бедный функционал, 10 — сложно что-то добавить)
  • удобство пользования (1 — очень неудобно, 10 — супер удобно)
  • соответствие результата задаче (1 — совсем не попали в желаемый макет, 10 — очень близко к описанию и макету)
  • визуальная составляющая (1 — выглядит непривлекательно, 10 — визуально привлекательный дашборд)

На основе полученных внутренних оценок будет рассчитана интегральная взвешенная оценка для инструмента.

Параллельно, результаты работы будут представлены в Telegram-канале @leftjoin, и подписчики также смогут высказать свое мнение относительно полученного результата.
В итоге каждый инструмент будет описан точкой на плоскости, а сама плоскость будет поделена на 4 части.

По мере написания новых материалов в цикле этот пост будет обновляться: будут добавляться ссылки на посты и оценки.

 2 комментария    2543   2020   bi   BI guide   BI-инструменты   excel   looker   powerbi   redash   tableau